Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shu-Jiang Tu,* Jin-Peng Zhang, Xiao-Tong Zhu, Jia-Ning Xu and Qian Wang

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail: laotu2001@263.net

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.042$
$w R$ factor $=0.102$
Data-to-parameter ratio $=17.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

10-Amino-3,3,6,6-tetramethyl-9-(4-bromo-phenyl)-3,4,5,6,9,10-hexahydroacridine$1,8(2 H, 7 H)$-dione

The title compound, $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{BrN}_{2} \mathrm{O}_{2}$, has been synthesized by the reaction of 3,3,6,6-tetramethyl-9-(4-bromophenyl)-1,8-dioxo-2,3,4,5,6,7-hexahydroanthene with hydrazine in alcohol under microwave irradiation. X-ray analysis reveals that the dihydropyridine ring adopts a boat conformation.

Comment

Acridine belongs to a special class of compounds, which are of interest not only because of their chemical and physical properties, but also due to their immense utility in the pharmaceutical and dye industries. The discovery of acridines as antimalarial and antitumour agents has attracted the attention of organic chemists and thus led to intense interest in the synthesis of several drugs based on acridine (Khurana et al., 1990; Matsumoto et al., 1983; Nakano et al., 1982). Chemical modification of the acridine ring system, such as the introduction of an aryl group on the N atom of acridine, causes laser activity (Murugan et al., 1998). In this paper, we report the crystal structure of the title compound, (I).

(I)

In the molecule of (I), the dihydropyridine ring adopts a boat conformation, with atoms N 1 and C3 deviating from the C1/C2/C4/C5 plane by 0.216 (3) and 0.441 (3) Å, respectively (Fig. 1). Both cyclohexene rings adopt envelope conformations: atom C 8 deviates from the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 9$ plane by 0.641 (3) \AA and atom C12 deviates from the C4/C5/C13/C11/ C10 plane by 0.617 (3) \AA. The dihedral angle between the C1/ $\mathrm{C} 2 / \mathrm{C} 4 / \mathrm{C} 5$ plane and the C14-C19 benzene ring is $85.07(7)^{\circ}$.

The molecules of (I) are connected via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O} / \mathrm{Br}$ hydrogen bonds (Table 2), forming a three-dimensional network (Fig. 2).

Experimental

The title compound, (I), was prepared by the reaction of 3,3,6,6-tetramethyl-9-(4-bromophenyl)-1,8-dioxo-2,3,4,5,6,7-hexa hydroanthene (1 mmol) with hydrazine (5 mmol) in ethanol (2 ml) under microwave irradiation. Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol (95%) solution (yield 85\%; m.p. 553-554 K).

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{BrN}_{2} \mathrm{O}_{2}$
$M_{r}=443.38$
Orthorhombic, Pbca
$a=11.8053$ (10) \AA
$b=15.6404$ (15) \AA
$c=22.432(2) \AA$
$V=4141.8(6) \AA^{3}$
$Z=8$
$D_{x}=1.422 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku Mercury CCD
diffractometer
ω scans
Absorption correction: multi-scan
(Jacobson, 1998)
$T_{\text {min }}=0.251, T_{\text {max }}=0.367$
43797 measured reflections
4743 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.102$
$S=1.16$
4743 reflections
266 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0421 P)^{2}\right. \\
& \quad+3.1966 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.77 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.84 \mathrm{e}^{-3}
\end{aligned}
$$

4372 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-15 \rightarrow 15$
$k=-18 \rightarrow 20$
$l=-23 \rightarrow 29$

Mo $K \alpha$ radiation

Cell parameters from 17928 reflections
$\theta=3.0-27.5^{\circ}$
$\mu=2.01 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Chunk, yellow
$0.80 \times 0.60 \times 0.50 \mathrm{~mm}$

$$
t=-20 \rightarrow 29
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 17$	$1.900(2)$	$\mathrm{C} 2-\mathrm{C} 6$	$1.454(3)$
$\mathrm{O} 1-\mathrm{C} 6$	$1.235(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.516(3)$
$\mathrm{O} 2-\mathrm{C} 10$	$1.229(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.499(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.392(3)$	$\mathrm{C} 3-\mathrm{C} 14$	$1.528(3)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.394(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.363(3)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.422(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.513(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.357(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.536(3)$
$\mathrm{C} 1-\mathrm{C} 9$	$1.505(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.537(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$119.52(16)$	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{N} 2$	$117.00(16)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	$121.76(16)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O}{ }^{\text {i }}$	0.90 (3)	2.33 (3)	3.220 (2)	173 (2)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 1^{\text {ii }}$	0.89 (3)	2.27 (3)	3.046 (3)	145 (2)
$\mathrm{C} 20-\mathrm{H} 20 \mathrm{~B} \cdots \mathrm{Br} 1^{\text {iii }}$	0.98	2.98	3.910 (2)	159
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{Br} 1^{\text {iv }}$	0.99	2.84	3.797 (2)	163
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{O} 2^{\text {i }}$	0.99	2.38	3.323 (3)	160
Symmetry codes: $-x+1,-y+1,-z+$	$\begin{array}{r} -x+ \\ -x+1 \end{array}$	$\begin{aligned} & \frac{1}{2}, z ; \\ & -z+\frac{3}{2} . \end{aligned}$	$x-\frac{1}{2},-y+$	$+1 ; \quad \text { (iii) }$

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids.

Figure 2
The molecular packing diagram of (I), projected along the a axis. Broken lines indicate hydrogen bonds. H atoms have been omitted, except those involved in hydrogen bonding.

The H atoms bonded to the N atom were located in a difference density map and refined isotropically. H atoms bonded to C atoms were located geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-1.00 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for others.

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 20002003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (grant No. 20372057), the Open Foundation of the Key Laboratory of Organic Synthesis of Jiangsu Province, the College of Chemistry and Chemical Engineering, Xuzhou University (grant No. JSK011), and the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province (grant No. 01AXL 14) for financial support.

organic papers

References

Jacobson, R. (1998). Private communication to the Rigaku Corp.
Khurana, J. M., Maikap, G. C. \& Mehta, S. (1990). Synthesis, pp. 731-732.
Matsumoto, H., Arai, T., Takahashi, M., Ashizawa, T., Nakano, T. \& Nagai, Y. (1983). Bull. Chem. Soc. Jpn, 56, 3009-3014.

Murugan, P., Shanmmugasundaram, P., Ramakrishan, V. T., Venkatachalapathy, B., Srividya, N., Ramamurthy, P., Gunasekaran, K. \& Velmurugan, D. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 999-1003.

Nakano, T., Takahashi, M., Arai, T., Seki, S., Matsumoto, H. \& Nagai, Y. (1982). Chem. Lett. pp. 613-616.

Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2000-2003). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA

